
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
This program provides an introduction to the principles of computer science and offers opportunity to get insight into some of its sub-areas. Having only 45 credits, it allows students to combine it with minor or major concentrations in other disciplines.
* Students who have sufficient knowledge in a programming language do not need to take COMP 202, but it must be replaced with an additional computer science complementary course.
Computer Science (Sci) : Overview of components of microcomputers, the internet design and implementation of programs using a modern high-level language, an introduction to modular software design and debugging. Programming concepts are illustrated using a variety of application areas.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Petitpas, Mathieu; Frydrychowicz, Maja (Fall) Frydrychowicz, Maja; Pomerantz, Daniel (Winter) Pomerantz, Daniel (Summer)
Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.
Terms: Fall 2010, Winter 2011
Instructors: Vybihal, Joseph P (Fall) Vybihal, Joseph P; Dudek, Gregory L (Winter)
Computer Science (Sci) : An introduction to the design of computer algorithms, including basic data structures, analysis of algorithms, and establishing correctness of programs. Overview of topics in computer science.
Terms: Fall 2010, Winter 2011
Instructors: Precup, Doina (Fall) Langer, Michael (Winter)
Computer Science (Sci) : Design and analysis of algorithms. Complexity of algorithms. Data structures. Introduction to graph algorithms and their analysis.
Terms: Fall 2010, Winter 2011
Instructors: Verbrugge, Clark (Fall) Crepeau, Claude (Winter)
Computer Science (Sci) : Number representations, combinational and sequential digital circuits, MIPS instructions and architecture datapath and control, caches, virtual memory, interrupts and exceptions, pipelining.
Terms: Fall 2010, Winter 2011
Instructors: Vybihal, Joseph P (Fall) Siddiqi, Kaleem (Winter)
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Jonsson, Wilbur; Sancho, Neville G F (Fall) Jonsson, Wilbur (Winter)
Mathematics & Statistics (Sci) : Mathematical foundations of logical thinking and reasoning. Mathematical language and proof techniques. Quantifiers. Induction. Elementary number theory. Modular arithmetic. Recurrence relations and asymptotics. Combinatorial enumeration. Functions and relations. Partially ordered sets and lattices. Introduction to graphs, digraphs and rooted trees.
Terms: Fall 2010
Instructors: Shepherd, Frederick (Fall)
3 - 6 credits from:
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2010, Winter 2011
Instructors: Loveys, James G; Huang, Hongnian (Fall) Loveys, James G (Winter)
Mathematics & Statistics (Sci) : Propositional calculus, truth-tables, switching circuits, natural deduction, first order predicate calculus, axiomatic theories, set theory.
Terms: Fall 2010
Instructors: Loveys, James G (Fall)
Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Anderson, William J (Fall) Partovi Nia, Vahid (Winter)
Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.
Terms: Fall 2010, Winter 2011
Instructors: Asgharian-Dastenaei, Masoud (Fall) Anderson, William J (Winter)
Mathematics & Statistics (Sci) : Review of mathematical writing, proof techniques, graph theory and counting. Mathematical logic. Graph connectivity, planar graphs and colouring. Probability and graphs. Introductory group theory, isomorphisms and automorphisms of graphs. Enumeration and listing.
Terms: Winter 2011
Instructors: Vetta, Adrian Roshan (Winter)
At least 3 credits from:
Computer Science (Sci) : Mathematical models of computers, finite automata, Turing machines, counter machines, push-down machines, computational complexity.
Terms: Fall 2010
Instructors: Hatami, Hamed (Fall)
Computer Science (Sci) : Computer representation of numbers, IEEE Standard for Floating Point Representation, computer arithmetic and rounding errors. Numerical stability. Matrix computations and software systems. Polynomial interpolation. Least-squares approximation. Iterative methods for solving a nonlinear equation. Discretization methods for integration and differential equations.
Terms: Fall 2010
Instructors: Chang, Xiao-Wen (Fall)
Computer Science (Sci) : A study of techniques for the design and analysis of algorithms.
Terms: Fall 2010, Winter 2011
Instructors: Vetta, Adrian Roshan (Fall) Nguyen, The Phuong (Winter)
At least 3 credits from:
Computer Science (Sci) : Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming.
Terms: Fall 2010, Winter 2011
Instructors: Pientka, Brigitte (Fall) Doherty, Jesse (Winter)
Computer Science (Sci) : Principles, mechanisms, techniques, and tools for object-oriented software development: encapsulation, design patterns, unit testing, etc.
Terms: Fall 2010
Instructors: Robillard, Martin (Fall)
The remaining complementary courses should be selected from any COMP courses at the 300 level or above except COMP 364, COMP 396, COMP 400 and COMP 431.
Note: Advanced COMP courses have more prerequisites than the required courses for this program. Students have to make sure that they have the appropriate prerequisites when choosing upper-level courses.