
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Students entering the Joint Major in Mathematics and Computer Science are normally expected to have completed the courses below or their equivalents. Otherwise, they will be required to make up any deficiencies in these courses over and above the 72 credits of courses in the program specification.
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases; quadratic loci in two and three dimensions.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Kelome, Djivede; Anderson, William J; Loveys, James G; Shahabi, Shahab; Clay, Adam (Fall) Kelome, Djivede; Anderson, William J (Winter) Palka, Karol (Summer)
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Drury, Stephen W; Trudeau, Sidney; Shahabi, Shahab (Fall) Hundemer, Axel W (Winter)
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Trudeau, Sidney (Fall) Sancho, Neville G F; Drury, Stephen W; Trudeau, Sidney (Winter)
* Students who have sufficient knowledge in a programming language do not need to take COMP 202 but can replace it with an additional Computer Science complementary course.
Computer Science (Sci) : Overview of components of microcomputers, the internet design and implementation of programs using a modern high-level language, an introduction to modular software design and debugging. Programming concepts are illustrated using a variety of application areas.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Petitpas, Mathieu; Frydrychowicz, Maja (Fall) Frydrychowicz, Maja; Pomerantz, Daniel (Winter) Pomerantz, Daniel (Summer)
Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.
Terms: Fall 2010, Winter 2011
Instructors: Vybihal, Joseph P (Fall) Vybihal, Joseph P; Dudek, Gregory L (Winter)
Computer Science (Sci) : An introduction to the design of computer algorithms, including basic data structures, analysis of algorithms, and establishing correctness of programs. Overview of topics in computer science.
Terms: Fall 2010, Winter 2011
Instructors: Precup, Doina (Fall) Langer, Michael (Winter)
Computer Science (Sci) : Design and analysis of algorithms. Complexity of algorithms. Data structures. Introduction to graph algorithms and their analysis.
Terms: Fall 2010, Winter 2011
Instructors: Verbrugge, Clark (Fall) Crepeau, Claude (Winter)
Computer Science (Sci) : Number representations, combinational and sequential digital circuits, MIPS instructions and architecture datapath and control, caches, virtual memory, interrupts and exceptions, pipelining.
Terms: Fall 2010, Winter 2011
Instructors: Vybihal, Joseph P (Fall) Siddiqi, Kaleem (Winter)
Computer Science (Sci) : Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming.
Terms: Fall 2010, Winter 2011
Instructors: Pientka, Brigitte (Fall) Doherty, Jesse (Winter)
Computer Science (Sci) : Control and scheduling of large information processing systems. Operating system software - resource allocation, dispatching, processors, access methods, job control languages, main storage management. Batch processing, multiprogramming, multiprocessing, time sharing.
Terms: Fall 2010, Winter 2011
Instructors: Tropper, Carl (Fall) Swidan, Andraws (Winter)
Computer Science (Sci) : Mathematical models of computers, finite automata, Turing machines, counter machines, push-down machines, computational complexity.
Terms: Fall 2010
Instructors: Hatami, Hamed (Fall)
Computer Science (Sci) : A study of techniques for the design and analysis of algorithms.
Terms: Fall 2010, Winter 2011
Instructors: Vetta, Adrian Roshan (Fall) Nguyen, The Phuong (Winter)
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Jonsson, Wilbur; Sancho, Neville G F (Fall) Jonsson, Wilbur (Winter)
Mathematics & Statistics (Sci) : Sets, functions and relations. Methods of proof. Complex numbers. Divisibility theory for integers and modular arithmetic. Divisibility theory for polynomials. Rings, ideals and quotient rings. Fields and construction of fields from polynomial rings. Groups, subgroups and cosets; group actions on sets.
Terms: Fall 2010
Instructors: Hahn, Heekyoung (Fall)
Mathematics & Statistics (Sci) : Linear equations over a field. Introduction to vector spaces. Linear mappings. Matrix representation of linear mappings. Determinants. Eigenvectors and eigenvalues. Diagonalizable operators. Cayley-Hamilton theorem. Bilinear and quadratic forms. Inner product spaces, orthogonal diagonalization of symmetric matrices. Canonical forms.
Terms: Winter 2011
Instructors: Hahn, Heekyoung (Winter)
Mathematics & Statistics (Sci) : A rigorous presentation of sequences and of real numbers and basic properties of continuous and differentiable functions on the real line.
Terms: Fall 2010
Instructors: Yassawi, Reem Adel (Fall)
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Sancho, Neville G F (Fall) Xu, Jian-Jun (Winter)
Mathematics & Statistics (Sci) : Error analysis. Numerical solutions of equations by iteration. Interpolation. Numerical differentiation and integration. Introduction to numerical solutions of differential equations.
Terms: Fall 2010
Instructors: Bartello, Peter (Fall)
Mathematics & Statistics (Sci) : Propositional calculus, truth-tables, switching circuits, natural deduction, first order predicate calculus, axiomatic theories, set theory.
Terms: Fall 2010
Instructors: Loveys, James G (Fall)
Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Anderson, William J (Fall) Partovi Nia, Vahid (Winter)
Mathematics & Statistics (Sci) : Review of mathematical writing, proof techniques, graph theory and counting. Mathematical logic. Graph connectivity, planar graphs and colouring. Probability and graphs. Introductory group theory, isomorphisms and automorphisms of graphs. Enumeration and listing.
Terms: Winter 2011
Instructors: Vetta, Adrian Roshan (Winter)
9 credits from the set of courses recommended for a major or honours program in Mathematics.
9 credits selected from Computer Science courses at the 300 level or above (except COMP 364, COMP 396, COMP 400, COMP 431) and ECSE 508.