Note: This is the 2013–2014 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Program Requirements
Note: Attainment of the Honours degree requires a CGPA of at least 3.00.
Program Prerequisites
PRE-PROGRAM REQUIREMENTS:
Students entering from the Freshman program must have included CHEM 110 and CHEM 120 or CHEM 115, BIOL 111 or BIOL 112, MATH 133, MATH 140/MATH 141 or MATH 150/MATH 151, PHYS 131/PHYS 142, or their equivalents in their Freshman year. Quebec students must have completed the DEC with appropriate science and mathematics courses. Note that students who have successfully completed MATH 150 and MATH 151 do not have to take MATH 222.
Required Courses (65 credits)
The required courses in this program consist of 65 credits in chemistry, physics and mathematics, listed below. The courses marked with an asterisk (*) are omitted from the program of students who have successfully completed them at the CEGEP level but the Chemistry courses must be replaced by courses in that discipline if students wish to be eligible for admission to the Ordre des chimistes du Québec. Students from outside Quebec or transfer students should consult the Academic Adviser.
See .
A computer science course, either COMP 202 or COMP 208, is strongly recommended during U1 for students who have no previous introduction to computer programming. Students should contact their adviser on this matter. Completion of Mathematics MATH 222 and MATH 315 during U1 is also strongly recommended. Physics PHYS 242 should be completed during U2.
* Denotes courses with CEGEP equivalents.
** Students who have successfully completed MATH 150 and MATH 151 are not required to take MATH 222.
*** Students may take up to 12 Research Project credits but only 6 of these may be used to fulfil the program requirement.
-
CHEM 212 Introductory Organic Chemistry 1 (4 credits) *
Overview
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2013, Winter 2014, Summer 2014
Instructors: Daoust, Michel; Gauthier, Jean-Marc; Huot, Mitchell; Tsantrizos, Youla S; Pavelka, Laura (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Lumb, Jean-Philip; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel; Huot, Mitchell (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
-
CHEM 222 Introductory Organic Chemistry 2 (4 credits) *
Overview
Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.
Terms: Fall 2013, Winter 2014, Summer 2014
Instructors: Daoust, Michel; Gauthier, Jean-Marc; Huot, Mitchell; Perepichka, Dmytro; Pavelka, Laura (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Auclair, Karine (Winter) Pavelka, Laura; Daoust, Michel; Huot, Mitchell (Summer)
-
CHEM 223 Introductory Physical Chemistry 1 (2 credits)
Overview
Chemistry : Kinetics 1: Gas laws, kinetic theory of collisions. Thermodynamics: Zeroth law of thermodynamics. First law of thermodynamics, heat capacity, enthalpy, thermochemistry, bond energies. Second law of thermodynamics; the entropy and free energy functions. Third law of thermodynamics, absolute entropies, free energies, Maxwell relations and chemical and thermodynamic equilibrium states.
Terms: Fall 2013
Instructors: Ronis, David M (Fall)
-
CHEM 243 Introductory Physical Chemistry 2 (2 credits)
Overview
Chemistry : Heterogeneous equilibrium: phase rule and phase diagrams. Ideal solutions, colligative properties, solubility. Electrochemistry, Debye-Hückel Theory. Kinetics 2: Transition State Theory, complex reactions, free-radical reactions, chain reactions, catalysis, reactions at surfaces, ionic effects of reactions in solution, photochemistry.
Terms: Winter 2014
Instructors: Cosa, Gonzalo (Winter)
-
CHEM 253 Introductory Physical Chemistry 1 Laboratory (1 credit)
Overview
Chemistry : Illustrative experiments in physical chemistry. Laboratory section of CHEM 223.
Terms: Fall 2013
Instructors: Blum, Amy; Sewall, Samuel Lewis; Gauthier, Jean-Marc (Fall)
-
CHEM 263 Introductory Physical Chemistry 2 Laboratory (1 credit)
Overview
Chemistry : Illustrative experiments in physical chemistry. Laboratory section of CHEM 243.
Terms: Winter 2014
Instructors: Blum, Amy; Sewall, Samuel Lewis; Gauthier, Jean-Marc (Winter)
-
CHEM 281 Inorganic Chemistry 1 (3 credits)
Overview
Chemistry : Basic concepts of electronic structure and molecular bonding will be developed and applied to the understanding of common materials. Acid-base chemistry. Survey of the chemistry of the main group elements. Introduction to coordination and organometallic chemistry.
Terms: Winter 2014
Instructors: Moores-François, Audrey (Winter)
-
CHEM 287 Introductory Analytical Chemistry (2 credits)
Overview
Chemistry : Qualitative and quantitative analysis. A survey of methods of analysis including theory and practice of semimicro qualitative analysis and representative gravimetric, volumetric and instrumental methods.
Terms: Fall 2013
Instructors: Sewall, Samuel Lewis (Fall)
Fall
Prerequisites: CHEM 110 and CHEM 120, or CHEM 115, or equivalent.
Corequisite: Students in CHEM 287 are required to take the laboratory, CHEM 297, either simultaneously with CHEM 287 or in the term following CHEM 287.
Restrictions: Not open to students who have taken CHEM 257D1/D2 or CHEM 277D1/D2.
-
CHEM 297 Introductory Analytical Chemistry Laboratory (1 credit)
Overview
Chemistry : Introductory experiments in analytical chemistry emphasizing classical and instrumental methods of quantitative analysis.
Terms: Fall 2013, Winter 2014
Instructors: Hamier, Jan; Sewall, Samuel Lewis; Gauthier, Jean-Marc; Mauzeroll, Janine (Fall) Hamier, Jan; Sewall, Samuel Lewis (Winter)
Fall, Winter
Prerequisites: CHEM 110 and CHEM 120, or CHEM 115, or equivalent.
Pre- or Co-requisite: CHEM 287.
Restriction: Not open to students who have taken CHEM 257D1/D2 or CHEM 277D1/D2.
-
CHEM 302 Introductory Organic Chemistry 3 (3 credits)
Overview
Chemistry : Topics covered may include the following: Aromatic compounds, heterocyclic chemistry, sulfur and phosphorus chemistry, organosulfur and organophosphorus compounds, and biomolecules such as lipids, carbohydrates, amino acids, polypeptides, DNA and RNA.
Terms: Fall 2013, Winter 2014
Instructors: Gleason, James L (Fall) Sleiman, Hanadi (Winter)
-
CHEM 334 Advanced Materials (3 credits)
Overview
Chemistry : The physicochemical properties of advanced materials. Topics discussed include photonics, information storage, 'smart' materials, biomaterials, clean energy materials, porous materials, and polymers.
Terms: Fall 2013
Instructors: Friscic, Tomislav (Fall)
Fall
Prerequisites: CHEM 110/CHEM 120 and PHYS 101/PHYS 102 or PHYS 131/PHYS 142, or CEGEP Physics and Chemistry, or equivalent. Prerequisite or Corerequisite: one of CHEM 203, CHEM 204, CHEM 223 and CHEM 243, CHEM 214 or equivalent; or one of PHYS 230 and PHYS 232, or equivalent; or permission of instructor.
Restriction: Not open to students who have taken or are taking PHYS 334.
-
CHEM 345 Molecular Properties and Structure 1 (3 credits)
Overview
Chemistry : An introduction to quantum chemistry covering the historical development, wave theory, methods of quantum mechanics, and applications of quantum chemistry.
Terms: Fall 2013
Instructors: Reven, Linda G (Fall)
- CHEM 355 Molecular Properties and Structure 2 (3 credits)
-
CHEM 365 Statistical Thermodynamics (2 credits)
Overview
Chemistry : Molecular basis of thermodynamics with applications to ideal gases and simple solids. Topics to be covered will include: calculation of thermodynamic functions, chemical equilibrium constants, Einstein and Debye models of solids, absolute reaction rate theory, Debye-Hückel theory of strong electrolytes.
Terms: Winter 2014
Instructors: Wiseman, Paul (Winter)
Winter
Prerequisite: CHEM 345
-
CHEM 367 Instrumental Analysis 1 (3 credits)
Overview
Chemistry : An introduction to modern instrumental analysis emphasizing chromatography, electrochemical methods and computational data analysis. Analytical methods to be examined in detail include gas-liquid and high performance liquid chromatography, LC mass spectrometry, and advanced electro-analysis techniques
Terms: Fall 2013
Instructors: Mauzeroll, Janine; Power, Joan F; Sewall, Samuel Lewis; Gauthier, Jean-Marc (Fall)
-
CHEM 377 Instrumental Analysis 2 (3 credits)
Overview
Chemistry : Spectroscopic methods of analysis will be studied with respect to fundamentals, operational aspects and instrument design. Topics will range from UV-visible to x-ray spectrometry. Methodologies will be evaluated with respect to their application in spectrometric systems. Laboratory automation will be studied and applied in the laboratory.
Terms: Winter 2014
Instructors: Salin, Eric Dunbar; Sewall, Samuel Lewis; Gauthier, Jean-Marc (Winter)
Winter
Prerequisite: CHEM 367
Each lab section is limited enrolment
-
CHEM 381 Inorganic Chemistry 2 (3 credits)
Overview
Chemistry : Introduction to transition metal chemistry, coordination numbers and geometry, and nomenclature will be followed by a discussion of crystal field theory and its applications to problems in spectroscopy, magnetochemistry, thermodynamics and kinetics. Several aspects related to applications of organometallic compounds in catalysis and bioinorganic systems will be discussed.
Terms: Fall 2013
Instructors: Arndtsen, Bruce A (Fall)
Fall
Prerequisite: CHEM 281.
Restriction: For Honours and Major Chemistry students
-
CHEM 392 Integrated Inorganic/Organic Laboratory (3 credits)
Overview
Chemistry : A program of modules is selected in consultation with the laboratory staff. The experimental modules consist of projects related to the theoretical principles, synthetic techniques and instrumental methods used in modern organic, inorganic and organometallic chemistry, including aspects of green chemistry and nanochemistry.
Terms: Fall 2013, Winter 2014
Instructors: Gauthier, Jean-Marc; Huot, Mitchell; Friscic, Tomislav (Fall) Huot, Mitchell; Gauthier, Jean-Marc; Friscic, Tomislav; Sewall, Samuel Lewis (Winter)
-
CHEM 393 Physical Chemistry Laboratory 2 (2 credits)
Overview
Chemistry : Selected experiments to illustrate physico-chemical principles more advanced than those of CHEM 363, CHEM 253 and CHEM 263.
Terms: Fall 2013, Winter 2014
Instructors: Gauthier, Jean-Marc; Galley, William Claude; Sewall, Samuel Lewis (Fall) Gauthier, Jean-Marc; Galley, William Claude; Sewall, Samuel Lewis (Winter)
-
CHEM 470 Research Project 1 (6 credits) ***
Overview
Chemistry : A course designed to give students research experience. The student will be assigned a project supervisor and a research project at the beginning of the session. The project will consist of a literature survey, experimental and /or theoretical work, a written research report and an oral examination.
Terms: Summer 2014, Fall 2013, Winter 2014
Instructors: Lumb, Jean-Philip (Summer) Butler, Ian Sydney (Fall) Butler, Ian Sydney (Winter)
Fall, Winter
Prerequisite: registration by Departmental permission only
-
CHEM 574 Introductory Polymer Chemistry (3 credits)
Overview
Chemistry : A survey course on the structure of polymers, kinetics and mechanisms of polymer and copolymer synthesis; characterization and molecular weight distributions; polymer microstructure, the thermodynamics of polymer solutions; the crystalline and amorphous states, rubber elasticity and structure-property relationships.
Terms: Fall 2013
Instructors: Barrett, Christopher (Fall)
-
MATH 222 Calculus 3 (3 credits) **
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2013, Winter 2014, Summer 2014
Instructors: Grieve, Nathan; L Kassaei, Payman (Fall) Jakobson, Dmitry (Winter) Trudeau, Sidney (Summer)
-
MATH 315 Ordinary Differential Equations (3 credits)
Overview
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2013, Winter 2014, Summer 2014
Instructors: Roth, Charles (Fall) Tsogtgerel, Gantumur (Winter) Ruan, Yuanlong (Summer)
-
PHYS 242 Electricity and Magnetism (2 credits)
Overview
Physics : Properties of electromagnetic fields, dipole and quadropole fields and their interactions, chemical binding of molecules, electromagnetic properties of materials, Maxwell's equations and properties of electromagnetic waves, propagation of waves in media.
Terms: Fall 2013
Instructors: Wiseman, Paul (Fall)
Fall
2 hours lectures
Prerequisites: CEGEP Physics, MATH 222
Complementary Courses (9 credits)
9 credits, three of:
* Students take either ANAT 542 or MIME 542.
-
ANAT 542 Transmission Electron Microscopy (3 credits) *
Overview
Anatomy & Cell Biology : Comprehensive study of transmission electron microscopy (TEM). Theory, principles and practical applications of imaging, analysis and advanced sample preparation relevant to biological and non-biological materials.
Terms: Winter 2014
Instructors: Rouiller, Isabelle; Gauvin, Raynald (Winter)
Prerequisite(s): Permission of instructor
2 hours of lecture per week, 3 hours of laboratories per week with an optional 2 hours of tutorials per week. The maximum number of students is 20. For students in science, engineering and life sciences.
-
CHEM 462 Green Chemistry (3 credits)
Overview
Chemistry : New reactions and methods which can be used for the production of chemicals from renewable feedstocks; the use of new environmentally benign solvents, catalysts and reagents; organic reactions in aqueous media and in supercritical carbon dioxide; bio-catalysis and bio-processes.
Terms: Fall 2013
Instructors: Moores-François, Audrey; Li, Chaojun (Fall)
-
CHEM 531 Chemistry of Inorganic Materials (3 credits)
Overview
Chemistry : Structure, bonding, synthesis, properties and applications of covalent, ionic, metallic crystals, and amorphous solids. Defect structures and their use in synthesis of specialty materials such as electronic conductors, semiconductors, and superconductors, and solid electrolytes. Basic principles of composite materials and applications of chemistry to materials processing.
Terms: Winter 2014
Instructors: Andrews, Mark P (Winter)
Winter
Prerequisite: CHEM 381
-
CHEM 533 Small Molecule Crystallography (3 credits)
Overview
Chemistry : Fundamentals of x-ray diffraction related to small molecule structure resolution, space groups, diffraction theory, strategies for structure solution, and refinement will be covered.
Terms: Winter 2014
Instructors: Bohle, David (Winter)
Winter
Prerequisite: CHEM 355 or permission of instructor.
-
CHEM 534 Nanoscience and Nanotechnology (3 credits)
Overview
Chemistry : Topics discussed include scanning probe microscopy, chemical self-assembly, computer modelling, and microfabrication/micromachining.
Terms: Fall 2013
Instructors: Andrews, Mark P (Fall)
-
CHEM 571 Polymer Synthesis (3 credits)
Overview
Chemistry : A survey of polymer preparation and characterization; mechanisms of chain growth, including free radical, cationic, anionic, condensation and transition metal-mediated polymerization, and the effects of these mechanisms on polymer architecture; preparation of alternating, block, graft and stereoblock copolymers; novel macromolecular structures including dendrimers and other nanostructures.
Terms: Winter 2014
Instructors: Kakkar, Ashok K (Winter)
Fall
Prerequisite: CHEM 302 or equivalent, or permission of instructor.
-
CHEM 582 Supramolecular Chemistry (3 credits)
Overview
Chemistry : Introduction to supramolecular organization will be followed by discussions on the nature of interactions and methodologies to create ordered aggregates of high complexity. Potential of supramolecular chemistry in fabricating smart materials will be explored using specific topics including inclusion chemistry, dendrimers, molecular self-assembly and crystal engineering.
Terms: Fall 2013
Instructors: Sleiman, Hanadi (Fall)
-
CHEM 585 Colloid Chemistry (3 credits)
Overview
Chemistry : Principles of the physical chemistry of phase boundaries. Electrical double layer theory; van der Waals forces; Brownian motion; kinetics of coagulation; electrokinetics; light scattering; solid/liquid interactions; adsorption; surfactants; hydrodynamic interactions; rheology of dispersions.
Terms: Winter 2014
Instructors: Van de Ven, Theodorus G (Winter)
-
MIME 260 Materials Science and Engineering (3 credits)
Overview
Mining & Materials Engineering : Structure properties and fabrication of metals, polymers, ceramics, composites; engineering properties: tensile, fracture, creep, oxidation, corrosion, friction, wear; fabrication and joining methods; principles of materials selection.
Terms: Fall 2013, Winter 2014
Instructors: Yue, Stephen; Paray, Florence (Fall) Song, Jun; Paray, Florence (Winter)
(2-2-5)
-
MIME 542 Transmission Electron Microscopy (3 credits) *
Overview
Mining & Materials Engineering : Comprehensive study of transmission electron microscopy (TEM). Theory, principles and practical application of imaging, analysis and advanced sample preparation relevant to biological and non-biological materials.
Terms: Winter 2014
Instructors: Gauvin, Raynald; Rouiller, Isabelle (Winter)
(2-2-4)
Prerequisite: Permission of instructor