91ÉçÇø

Liberal Program - Core Science Component Anatomy and Cell Biology (48 credits)

important

Note: This is the 2018–2019 eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or .

Offered by: Anatomy and Cell Biology     Degree: Bachelor of Science

Program Requirements

Revision, May 2018. Start of revision.

Students may complete this program with a minimum of 47 credits or a maximum of 48 credits depending on their choice of complementary courses.

Required Courses (32 credits)

Note: ANAT 261 must be taken in U1.

* Students who have taken the equivalent of CHEM 212 and/or MATH 203 in CEGEP (as defined at ) are exempt and must replace these credits with elective course credits to satisfy the total credit requirement for their degree.

  • ANAT 212 Molecular Mechanisms of Cell Function (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.

    Terms: Winter 2019

    Instructors: Pause, Arnim; Bouchard, Maxime; Young, Jason; Reinhardt, Dieter; Duchaine, Thomas (Winter)

  • ANAT 214 Systemic Human Anatomy (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : Introduction to the gross anatomy of the various organ systems of head, neck and trunk regions of the human body. Practical tutorials include studies of prepared specimens, use of the anatomical museum and audio-visual materials. This course is limited in size. Selection of students (other than those requiring the course as part of their program) will be made after the first lecture. (Admission is guaranteed for all students enrolled in programs in the Department of Anatomy and Cell Biology for which ANAT 214 is a required course.)

    Terms: Fall 2018

    Instructors: Venne, Gabriel (Fall)

    • Fall

    • 2 hours lectures, 2 hours practical laboratory, 2 hours of tutorial

    • Prerequisites: BIOL 112 (or CEGEP equivalent), PHGY 209 and PHGY 210

    • Recommended: to U2 students in Anatomy and Cell Biology

  • ANAT 261 Introduction to Dynamic Histology (4 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : An introduction to light and electron microscopic anatomy in which cell and tissue dynamics will be explored in the principal tissues and organs of the body.

    Terms: Fall 2018

    Instructors: Mandato, Craig A.; Morales, Carlos R (Fall)

    • Fall

    • 3 hours lectures, 2 hours laboratory

    • Must be taken in U1 by students in Anatomy and Cell Biology programs

    • Prerequisite: BIOL 112 or CEGEP equivalent

    • Restriction: Open to students in biological sciences and others by special permission

  • ANAT 262 Introductory Molecular and Cell Biology (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : The architectural, functional and temporal continuity of organelles and the cytoskeleton of mammalian cells is introduced as well as their functional integration in the phenomena of exocytosis, endocytosis, protein trafficking and cell motility and adhesion.

    Terms: Winter 2019

    Instructors: Presley, John; Stochaj, Ursula; Bechstedt, Susanne; Bui, Khanh Huy (Winter)

    • Winter

    • 3 hours lecture

    • Corequisites: ANAT 212 or BIOC 212 or BIOL 201

    • Restriction: Open to students in biological sciences and others by special permission

  • BIOL 200 Molecular Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.

    Terms: Fall 2018

    Instructors: Zetka, Monique; Hastings, Kenneth E M; Reyes Lamothe, Rodrigo; Lasko, Paul; Hendricks, Shelton (Fall)

    • Fall

    • 3 hours lecture, 1 hour optional tutorial

    • Prerequisite: BIOL 112 or equivalent

    • Corequisite: CHEM 212 or equivalent

  • BIOL 202 Basic Genetics (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.

    Terms: Winter 2019, Summer 2019

    Instructors: Moon, Nam Sung; Nilson, Laura; Western, Tamara (Winter) Dankort, David; Hipfner, David (Summer)

    • Winter, Summer

    • 3 hours lecture, 1 hour optional tutorial

    • Prerequisite: BIOL 200.

    • Restriction: Not open to students who have taken or are taking LSCI 204.

  • CHEM 212 Introductory Organic Chemistry 1 (4 credits) *

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.

    Terms: Fall 2018, Winter 2019, Summer 2019

    Instructors: Pavelka, Laura; Vlaho, Danielle; Daoust, Michel; Gauthier, Jean-Marc (Fall) Lumb, Jean-Philip; Vlaho, Danielle; Daoust, Michel; Gauthier, Jean-Marc; Huot, Mitchell (Winter) Sirjoosingh, Pallavi; Vlaho, Danielle; Daoust, Michel; Gauthier, Jean-Marc (Summer)

    • Fall, Winter, Summer

    • Prerequisite: CHEM 110 or equivalent.

    • Corequisite: CHEM 120 or equivalent.

    • Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent

    • Each lab section is limited enrolment

    • Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().

  • PHGY 209 Mammalian Physiology 1 (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : Physiology of body fluids, blood, body defense mechanisms, muscle, peripheral, central, and autonomic nervous systems.

    Terms: Fall 2018

    Instructors: Vollrath, Melissa; Gold, Phil; Wechsler, Ann; Ragsdale, David S; Shrier, Alvin; Cook, Erik (Fall)

  • PHGY 210 Mammalian Physiology 2 (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : Physiology of cardiovascular, respiratory, digestive, endocrine and renal systems.

    Terms: Winter 2019

    Instructors: Vollrath, Melissa; Campeau, Lysanne; Takano, Tomoko; Guevara, Michael R; Lauzon, Anne-Marie; White, John H (Winter)

One of the following statistics courses:

  • MATH 203 Principles of Statistics 1 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Examples of statistical data and the use of graphical means to summarize the data. Basic distributions arising in the natural and behavioural sciences. The logical meaning of a test of significance and a confidence interval. Tests of significance and confidence intervals in the one and two sample setting (means, variances and proportions).

    Terms: Fall 2018, Winter 2019, Summer 2019

    Instructors: Wolfson, David B; Khalili Mahmoudabadi, Abbas (Fall) Wolfson, David B (Winter) Correa, Jose Andres (Summer)

    • No calculus prerequisites

    • Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.

    • You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar. Students should consult for information regarding transfer credits for this course.

  • PSYC 204 Introduction to Psychological Statistics (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : The statistical analysis of research data; frequency distributions; graphic representation; measures of central tendency and variability; elementary sampling theory and tests of significance.

    Terms: Fall 2018, Winter 2019, Summer 2019

    Instructors: Amsel, Rhonda N (Fall) Darainy, Mohammad (Winter) Sadikaj, Gentiana (Summer)

    • Fall and Winter

    • Restriction: Not open to students who have passed a CEGEP statistics course(s) with a minimum grade of 75%: Mathematics 201-307 or 201-337 or equivalent or the combination of Quantitative Methods 300 with Mathematics 300

    • This course is a prerequisite for PSYC 305, PSYC 406, PSYC 310, PSYC 336

    • You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.

Complementary Courses (16 credits)

Students complete a minimum of 15 or a maximum of 16 complementary course credits selected as follows:

9 credits of advanced anatomy courses (AAC) selected from:

  • ANAT 314 Human Musculoskeletal Anatomy (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : Introduction to the gross anatomy of the musculoskeletal system (bone, joints, muscles and neurovascular structures) of the head, neck, trunk, upper and lower limb regions of the human body, emphasizing functional anatomy and including surface anatomy and imaging. Exploration of the human body through cadaveric prosections, imaging and other materials.

    Terms: Winter 2019

    Instructors: Venne, Gabriel (Winter)

    • Prerequisite: ANAT 214

    • Restrictions: Not open to students who have taken or are taking ANAT 315.

  • ANAT 321 Circuitry of the Human Brain (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : This course explores the functional organization of the human brain and spinal cord. The course focuses on how neuronal systems are designed to subserve specific motor, sensory, and cognitive operations.

    Terms: Fall 2018

    Instructors: Ragsdale, David S (Fall)

  • ANAT 322 Neuroendocrinology (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : A lecture course describing brain-endocrine relationships. Emphasis on modern experimental evidence and conceptual developments within the field.

    Terms: Winter 2019

    Instructors: Walker, Claire; Stroh, Thomas; Tamilia, Michael; Cermakian, Nicolas; Bernard, Daniel; Kokoeva, Maia; Storch, Kai-Florian (Winter)

    • Winter

    • 3 hours lecture

    • Prerequisite: PHGY 210.

  • ANAT 365 Cellular Trafficking (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : This course explores the fundamental mechanisms that govern the organizations of intracellular membranes, how vesicle generation is signaled, how the membranes curve and bud, and how vesicles know where to go and fuse. In addition to intracellular vesicles, the principles of mitochondrial dynamics and process of cellular autophagy are examined. Also, there is a focus on "Applied Cell Biology", with respect to how the exquisite regulation of cellular transport plays a central role in complex biological systems. A series of modules will take students through the mechanisms of cellular polarity, neurotransmission, metabolic cell biology, pathogen invasion, and more. The emphasis is on the morphological aspects of the processes, and on the major techniques that led to discovery.

    Terms: Fall 2018

    Instructors: McBride, Heidi; McPherson, Peter Scott; Kennedy, Timothy E; Stroh, Thomas; Sossin, Wayne Steven; Estall, Jennifer (Fall)

  • ANAT 381 Experimental Embryology (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : The basic processes of reproduction and embryonic development, such as molecular signaling; cell-cell interaction; differentiation; cell fate determination; genetic and epigenetic control of embryonic development.

    Terms: Fall 2018

    Instructors: Nagano, Makoto; Ao, Asangla; Ryan, Aimee; Clarke, Hugh; Tanny, Jason (Fall)

    • Fall

    • 3 hour lectures

    • Prerequisites: ANAT 261, BIOL 202 or permission of instructor

    • Restriction(s): Not open to students who have taken BIOL 303.

  • ANAT 565 Diseases-Membrane Trafficking (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : This course will examine how research into diseases has played a key role in unraveling the intricate molecular mechanisms controlling membrane trafficking in mammalian cells. Membrane trafficking disorders fall into two groups those arising from a) membrane-associated or b) cytoskeletal defect. Topics include a) mechanisms of endosomal maturation, lysosomal storage disorders and rab protein-mediated vesicular trafficking and b) rho GTPase and cytoskeletal binding protein mediated trafficking associated with neurological diseases and cancer.

    Terms: Winter 2019

    Instructors: Presley, John; Lefrancois, Stephane; Lamarche, Nathalie; Nilsson, Tommy; Pshezhetsky, Alexei (Winter)

  • NEUR 310 Cellular Neurobiology (3 credits)

    Offered by: Neurology and Neurosurgery (Faculty of Science)

    Overview

    Neurology and Neurosurgery : A survey of the functional organization of nerve cells, signalling in the nervous system, and principles of neural development. Topics include cell polarity, neurotransmitters, neurotrophins, receptors and second messengers, cell lineage, guidance of axon outgrowth, and nerve regeneration. Emphasis will be placed on analysis of neurons at the molecular level.

    Terms: Winter 2019

    Instructors: Cloutier, Jean-Francois; Ragsdale, David S; Kennedy, Timothy E; Fournier, Alyson Elise; Sossin, Wayne Steven; Ruthazer, Edward; Huot, Philippe (Winter)

6-7 credits of biologically oriented courses (BOC) selected from:

  • ANAT 314 Human Musculoskeletal Anatomy (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : Introduction to the gross anatomy of the musculoskeletal system (bone, joints, muscles and neurovascular structures) of the head, neck, trunk, upper and lower limb regions of the human body, emphasizing functional anatomy and including surface anatomy and imaging. Exploration of the human body through cadaveric prosections, imaging and other materials.

    Terms: Winter 2019

    Instructors: Venne, Gabriel (Winter)

    • Prerequisite: ANAT 214

    • Restrictions: Not open to students who have taken or are taking ANAT 315.

  • ANAT 321 Circuitry of the Human Brain (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : This course explores the functional organization of the human brain and spinal cord. The course focuses on how neuronal systems are designed to subserve specific motor, sensory, and cognitive operations.

    Terms: Fall 2018

    Instructors: Ragsdale, David S (Fall)

  • ANAT 322 Neuroendocrinology (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : A lecture course describing brain-endocrine relationships. Emphasis on modern experimental evidence and conceptual developments within the field.

    Terms: Winter 2019

    Instructors: Walker, Claire; Stroh, Thomas; Tamilia, Michael; Cermakian, Nicolas; Bernard, Daniel; Kokoeva, Maia; Storch, Kai-Florian (Winter)

    • Winter

    • 3 hours lecture

    • Prerequisite: PHGY 210.

  • ANAT 365 Cellular Trafficking (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : This course explores the fundamental mechanisms that govern the organizations of intracellular membranes, how vesicle generation is signaled, how the membranes curve and bud, and how vesicles know where to go and fuse. In addition to intracellular vesicles, the principles of mitochondrial dynamics and process of cellular autophagy are examined. Also, there is a focus on "Applied Cell Biology", with respect to how the exquisite regulation of cellular transport plays a central role in complex biological systems. A series of modules will take students through the mechanisms of cellular polarity, neurotransmission, metabolic cell biology, pathogen invasion, and more. The emphasis is on the morphological aspects of the processes, and on the major techniques that led to discovery.

    Terms: Fall 2018

    Instructors: McBride, Heidi; McPherson, Peter Scott; Kennedy, Timothy E; Stroh, Thomas; Sossin, Wayne Steven; Estall, Jennifer (Fall)

  • ANAT 381 Experimental Embryology (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : The basic processes of reproduction and embryonic development, such as molecular signaling; cell-cell interaction; differentiation; cell fate determination; genetic and epigenetic control of embryonic development.

    Terms: Fall 2018

    Instructors: Nagano, Makoto; Ao, Asangla; Ryan, Aimee; Clarke, Hugh; Tanny, Jason (Fall)

    • Fall

    • 3 hour lectures

    • Prerequisites: ANAT 261, BIOL 202 or permission of instructor

    • Restriction(s): Not open to students who have taken BIOL 303.

  • ANAT 565 Diseases-Membrane Trafficking (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : This course will examine how research into diseases has played a key role in unraveling the intricate molecular mechanisms controlling membrane trafficking in mammalian cells. Membrane trafficking disorders fall into two groups those arising from a) membrane-associated or b) cytoskeletal defect. Topics include a) mechanisms of endosomal maturation, lysosomal storage disorders and rab protein-mediated vesicular trafficking and b) rho GTPase and cytoskeletal binding protein mediated trafficking associated with neurological diseases and cancer.

    Terms: Winter 2019

    Instructors: Presley, John; Lefrancois, Stephane; Lamarche, Nathalie; Nilsson, Tommy; Pshezhetsky, Alexei (Winter)

  • BIOL 300 Molecular Biology of the Gene (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : A survey of current knowledge and approaches in the area of regulation of gene expression, post-transcriptional control of gene expression, and signal transduction.

    Terms: Fall 2018

    Instructors: Schöck, Frieder; Moon, Nam Sung (Fall)

  • BIOL 301 Cell and Molecular Laboratory (4 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.

    Terms: Fall 2018, Winter 2019

    Instructors: Zheng, Huanquan; Harrison, Paul; Reyes Lamothe, Rodrigo (Fall) Zheng, Huanquan; Harrison, Paul; Reyes Lamothe, Rodrigo (Winter)

    • Fall or Winter

    • 1 hour lecture and one 6-hour laboratory

    • Prerequisites: PHYS 102 or PHYS 142, BIOL 200, BIOL 201 or ANAT/BIOC 212, and BIOL 202. BIOL 206 recommended.

    • Restrictions: Not open to students who have taken or are taking BIOC 300. Requires departmental approval.

    • For approval email anne-marie.sdicu [at] mcgill.ca. Specify your ID number as well as the term and two lab day preferences.

  • BIOL 303 Developmental Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : A consideration of the fundamental processes and principles operating during embryogenesis. Experimental analyses at the molecular, cellular, and organismal levels will be presented and discussed to provide an overall appreciation of developmental phenomena.

    Terms: Winter 2019

    Instructors: Hendricks, Shelton; Rao, Yong; Dufort, Daniel (Winter)

  • BIOL 306 Neural Basis of Behaviour (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Neural mechanisms of animal behaviour; neuroethology; cellular neurophysiology, integrative networks within nervous systems; neural control of movement; processing of sensory information.

    Terms: Fall 2018

    Instructors: Watt, Alanna; Dent, Joseph Alan; Oyama, Tomoko (Fall)

  • BIOL 314 Molecular Biology of Oncogenes (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : The genes that cause cancer are altered versions of genes present in normal cells. The origins of these oncogenes, their genetic structure, regulation, and the biochemical properties of the oncogene-encoded proteins will be analyzed in an attempt to understand the origins of human and animal cancers.

    Terms: Fall 2018

    Instructors: Majewska, Loydie; Christensen, Karen Elizabeth; Del Rincon, Sonia Victoria; Duchaine, Thomas; Dankort, David (Fall)

  • BIOL 320 Evolution of Brain and Behaviour (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Functional and comparative approach to neuroanatomy, examining how species changes in brain organization contribute to evolutionary changes in behaviour.

    Terms: This course is not scheduled for the 2018-2019 academic year.

    Instructors: There are no professors associated with this course for the 2018-2019 academic year.

    • Winter

    • 2 hours of lecture and 1 hour of conference (mandatory)

    • Prerequisite: NSCI 201 or BIOL 306

  • COMP 204 Computer Programming for Life Sciences (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Computer Science (Sci): Computer programming in a high level language: variables, expressions, types, functions, conditionals, loops, objects and classes. Introduction to algorithms, modular software design, libraries, file input/output, debugging. Emphasis on applications in the life sciences.

    Terms: Fall 2018, Winter 2019

    Instructors: Blanchette, Mathieu (Fall) Li, Yue (Winter)

  • EXMD 504 Biology of Cancer (3 credits)

    Offered by: Medicine (Faculty of Science)

    Overview

    Experimental Medicine : An introduction to the biology of malignancy. A multidisciplinary approach dealing with the etiology of cancer, the biological properties of malignant cells, the host response to tumour cell growth and the principles of cancer therapy.

    Terms: Fall 2018

    Instructors: Topisirovic, Ivan; Fabian, Marc (Fall)

    • Fall

    • Prerequisite (Undergraduate): A good knowledge of biology at the cellular and molecular level. Open to U3 and graduate students only

  • NEUR 310 Cellular Neurobiology (3 credits)

    Offered by: Neurology and Neurosurgery (Faculty of Science)

    Overview

    Neurology and Neurosurgery : A survey of the functional organization of nerve cells, signalling in the nervous system, and principles of neural development. Topics include cell polarity, neurotransmitters, neurotrophins, receptors and second messengers, cell lineage, guidance of axon outgrowth, and nerve regeneration. Emphasis will be placed on analysis of neurons at the molecular level.

    Terms: Winter 2019

    Instructors: Cloutier, Jean-Francois; Ragsdale, David S; Kennedy, Timothy E; Fournier, Alyson Elise; Sossin, Wayne Steven; Ruthazer, Edward; Huot, Philippe (Winter)

  • NEUR 502 Basic and Clinical Aspects of Neuroimmunology (3 credits)

    Offered by: Neurology and Neurosurgery (Faculty of Medicine and Health Sciences)

    Overview

    Neurology and Neurosurgery : The role of inflammation in physiological function of the nervous system, as well as in a broad range of neurological diseases where inflammation can act as a contributing factor to the development of pathology or promote recovery, including fundamentals of neuroimmunology to molecular/cellular aspects of neuroinflammation underlying the pathology seen in clinical conditions.

    Terms: Winter 2019

    Instructors: Zhang, Ji; Mechawar, Naguib; Luheshi, Giamal; David, Samuel; Antel, Jack P; Hamel, Edith; Stifani, Stefano; Cermakian, Nicolas; Stellwagen, David; King, Irah (Winter)

  • PATH 300 Human Disease (3 credits)

    Offered by: Pathology (Faculty of Science)

    Overview

    Pathology : Provides a fundamental understanding of the diseases prevalent in North America, for upper level students in the biological sciences. Includes: general responses of cells and organ systems to injury; assessment of individual diseases by relating the causes, symptoms, diagnosis, treatment and prevention to the primary biological abnormalities in each disorder.

    Terms: Winter 2019

    Instructors: Zorychta, Edith (Winter)

  • PHAR 300 Drug Action (3 credits)

    Offered by: Pharmacology and Therapeutics (Faculty of Science)

    Overview

    Pharmacology and Therapeutics : Principles of pharmacology and toxicology. Frequently encountered drugs will be used as a focus to illustrate sites and mechanisms of action, distribution, metabolism, elimination and adverse side effects.

    Terms: Fall 2018

    Instructors: Zorychta, Edith; Hales, Barbara F (Fall)

  • PHAR 301 Drugs and Disease (3 credits)

    Offered by: Pharmacology and Therapeutics (Faculty of Science)

    Overview

    Pharmacology and Therapeutics : This course further explores the basic principles of pharmacology as illustrated by drugs used in the treatment of disease. Emphasis is placed on drugs used for diseases prevalent in North America.

    Terms: Winter 2019

    Instructors: Hales, Barbara F; Clarke, Paul; Bowie, Derek; Castagner, Bastien (Winter)

Revision, May 2018. End of revision.
Faculty of Science—2018-2019 (last updated Aug. 22, 2018) (disclaimer)
Back to top