Program Requirements
Students in this concentration take five courses in the area of design, including the completion of an interdisciplinary project.
Students should complete a Course Authorization Form, available from the 91社区 Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.
Total concentration credit weight: 15-16 credits
Required Courses
6 credits
-
MECH 498 Interdisciplinary Design Project 1 (3 credits)
Overview
Mechanical Engineering : Completion of an individual project on an interdisciplinary theme with emphasis on a balanced combination on analysis and synthesis.
Terms: Fall 2024
Instructors: Lee, Timothy (Fall)
(1-2-6)
-
MECH 499 Interdisciplinary Design Project 2 (3 credits)
Overview
Mechanical Engineering : The individual project initiated in MECH 498 is continued and finalized in this course.
Terms: Winter 2025
Instructors: Lee, Timothy (Winter)
(1-2-6)
Corequisite: MECH 498.
Complementary Courses
9-10 credits from the following:
-
ARCH 515 Sustainable Design (3 credits)
Overview
Architecture : This course will address sustainable design theory and applications in the built environment with students from a variety of fields (architecture, urban planning, engineering, sociology, environmental studies, economics, international studies). Architecture will provide the focus for environmental, socio-cultural and economic issues.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
(3-0-6)
-
CHEE 453 Process Design (4 credits)
Overview
Chemical Engineering : The role of the chemical engineer. Steps in the preparation of a process design. Detailed information about most common chemical engineering equipment. Materials of construction. Analysis of process control and application to large systems. Structure of process design systems. Safety, environmental control in plant design. Process design costing and return on investment. Computer-aided process and plant design programs.
Terms: Fall 2024
Instructors: Peters, Norman; Salama, Philippe (Fall)
-
MECH 497 Value Engineering (3 credits)
Overview
Mechanical Engineering : Value Engineering is an in-depth analysis of an industrial product or process with a view to improving its design and/or performance to increase its worth. This is a workshop type of course. Projects will be supplied by industrial firms and students will work in teams with industrial personnel.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
(0-8-1)
Prerequisites: MECH 393 and completion of 45 credits
-
MECH 528 Product Design (3 credits)
Overview
Mechanical Engineering : A study of the design issues present in product life cycle demands. Computer-aided systems. Rapid prototyping. Design for manufacturability. Integration of mechanics, electronics and software in products. Effect on design of product cost, maintainability, recycling, marketability.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
(3-0-6)
Prerequisite (Undergraduate): Permission of the instructor
**This course will be held on July 14-26, 31, August 1, 2 and there will be an exam due on August 16, 2020.
**Due to the intensive nature of this course, the standard add/drop and withdrawal deadlines do not apply. Add/drop is the first lecture day and withdrawal is the second lecture day.
-
MECH 530 Mechanics of Composite Materials (3 credits)
Overview
Mechanical Engineering : Fiber-reinforced composites. Stress, strain, and strength of composite laminates and honeycomb structures. Failure modes and failure criteria. Environmental effects. Manufacturing processes. Design of composite structures. Computer modelling of composites. Computer techniques are utilized throughout the course.
Terms: Fall 2024
Instructors: Lessard, Larry (Fall)
(3-0-6)
Corequisite: MECH 321 or equivalent/instructor's permission.
-
MECH 543 Design with Composite Materials (3 credits)
Overview
Mechanical Engineering : Material systems/selection process. Cost vs. performance. Laminate layup procedures. Theory and application of filament winding of composite cylinders. Regular oven and autoclave oven curing, analysis of resulting material performance. Practical design considerations and tooling. Analysis of environmental considerations. Joining techniques. Analysis of test methods. Theory of repair techniques.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
(3-3-3)
Prerequisite: MECH 530
-
MECH 565 Fluid Flow and Heat Transfer Equipment (3 credits)
Overview
Mechanical Engineering : Pipes and piping systems, pumps, and valves. Fans and building air distribution systems. Basic thermal design methods for fins and heat exchangers. Thermal design of shell-and-tube and compact heat exchangers.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
-
MECH 579 Multidisciplinary Design Optimization (3 credits)
Overview
Mechanical Engineering : A comprehensive introduction to important algorithms in sensitivity analysis and multidisciplinary design optimization of large systems. Topics include: unconstrained and constrained optimization, sensitivity analysis, gradient-free optimization, multi-objective optimization, and various multidisciplinary algorithms and approaches for design optimization.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
(3-0-6)
Prerequisite(s): MECH 309