Stuart Trenholm, PhD
Stuart Trenholm's lab studies how neural connectivity enables us to see objects around us. His work could discover new ways to improve the vision of people who have lost their sightÌýby understanding how the specific wiring of neuronal circuits in the visual system leads to complex visually responsive neurons and ultimately leads to perception. The lab studies visual circuits in healthy, vision-impaired and vision-rehabilitated animals. The lab merges multiple disciplines, including physiology, animal behaviour, virology, genetics, disease models and optogenetics. Techniques in the lab include monitoring brain activity at cellular resolution using in vivo 2-photon calcium imaging, utilizing virus-mediated neuronal circuit tracing strategies, and implementing optogenetic vision restoration strategies.
Hillier D, Fiscella M, Drinnenberg A,ÌýTrenholm S, Rompani SB, Raics Z, Katona G, Juttner J, Hierlemann A, Rozsa B, Roska B (2017) Causal evidence for retina-dependent and –independent visual motion computation in mouse cortex.ÌýNature Neuroscience. 20: 960-68.
Wertz A*,ÌýTrenholm S*, Yonehara K, Hillier D, Raics Z, Leinwieber M, Szalay G, Keller G, Rozsa B, Conzellman KK, Roska B (2015) Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules.ÌýScience.Ìý349:70-4.Ìý*indicates equal contribution.Ìý
Trenholm SÌý& Awatramani GB (2015) Origins of spontaneous activity in the degenerating retina.Frontiers in Cellular Neuroscience. 9:277.Ìýdoi: 10.3389.Ìý ÌýÌý
Trenholm S*, McLaughlin AJ*, Schwab DJ, Turner MH, Smith RG, Rieke F, Awatramani GB (2014)ÌýNon-linear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlations.Nature Neuroscience. 17:1759-66. *indicates equal contribution.
Trenholm S, Schwab DJ, Balasubramanian VB, Awatramani GB (2013) Lag normalization in an electrically-coupled neural network.ÌýNature Neuroscience. 16:154-6.
Trenholm S, Johnson K, Li X, Smith RG, Awatramani GB (2011)Ìý.ÌýNeuron. 71:683-94.Ìý Ìý